Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Biomacromolecules ; 25(2): 1144-1152, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38166194

RESUMO

Hyaline cartilage, a soft tissue enriched with a dynamic extracellular matrix, manifests as a supramolecular system within load-bearing joints. At the same time, the challenge of cartilage repair through tissue engineering lies in replicating intricate cellular-matrix interactions. This study attempts to investigate chondrocyte responses within double-network supramolecular hybrid hydrogels tailored to mimic the dynamic molecular nature of hyaline cartilage. To this end, we infused noncovalent host-guest polyrotaxanes, by blending α-cyclodextrins as host molecules and polyethylene glycol as guests, into a gelatin-based covalent matrix, thereby enhancing its dynamic characteristics. Subsequently, chondrocytes were seeded into these hydrogels to systematically probe the effects of two concentrations of the introduced polyrotaxanes (instilling different levels of supramolecular dynamism in the hydrogel systems) on the cellular responsiveness. Our findings unveiled an augmented level of cellular mechanosensitivity for supramolecular hydrogels compared to pure covalent-based systems. This is demonstrated by an increased mRNA expression of ion channels (TREK1, TRPV4, and PIEZO1), signaling molecules (SOX9) and matrix-remodeling enzymes (LOXL2). Such outcomes were further elevated upon external application of biomimetic thermomechanical loading, which brought a stark increase in the accumulation of sulfated glycosaminoglycans and collagen. Overall, we found that matrix adaptability plays a pivotal role in modulating chondrocyte responses within double-network supramolecular hydrogels. These findings hold the potential for advancing cartilage engineering within load-bearing joints.


Assuntos
Condrócitos , Rotaxanos , Condrócitos/metabolismo , Rotaxanos/farmacologia , Hidrogéis/farmacologia , Hidrogéis/metabolismo , Simulação de Dinâmica Molecular , Cartilagem/metabolismo , Engenharia Tecidual , Células Cultivadas
2.
J Biomech ; 163: 111952, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38228026

RESUMO

Deep learning models (DLM) are efficient replacements for computationally intensive optimization techniques. Musculoskeletal models (MSM) typically involve resource-intensive optimization processes for determining joint and muscle forces. Consequently, DLM could predict MSM results and reduce computational costs. Within the total shoulder arthroplasty (TSA) domain, the glenohumeral joint force represents a critical MSM outcome as it can influence joint function, joint stability, and implant durability. Here, we aimed to employ deep learning techniques to predict both the magnitude and direction of the glenohumeral joint force. To achieve this, 959 virtual subjects were generated using the Markov-Chain Monte-Carlo method, providing patient-specific parameters from an existing clinical registry. A DLM was constructed to predict the glenohumeral joint force components within the scapula coordinate system for the generated subjects with a coefficient of determination of 0.97, 0.98, and 0.98 for the three components of the glenohumeral joint force. The corresponding mean absolute errors were 11.1, 12.2, and 15.0 N, which were about 2% of the maximum glenohumeral joint force. In conclusion, DLM maintains a comparable level of reliability in glenohumeral joint force estimation with MSM, while drastically reducing the computational costs.


Assuntos
Aprendizado Profundo , Articulação do Ombro , Humanos , Articulação do Ombro/fisiologia , Reprodutibilidade dos Testes , Fenômenos Biomecânicos , Manguito Rotador/fisiologia
3.
iScience ; 26(12): 108519, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38125014

RESUMO

Cartilage degeneration, typically viewed as an irreversible, vicious cycle, sees a significant reduction in two essential biophysical cues: the well-established hydrostatic pressure (HP) and the recently discovered transient temperature increase. Our study aimed to evaluate the combined influence of these cues on maintaining cartilage homeostasis. To achieve this, we developed a customized bioreactor, designed to mimic the specific hydrostatic pressure and transient thermal increase experienced during human knee physiological activities. This system enabled us to investigate the response of human 3D-cultured chondrocytes and human cartilage explants to either isolated or combined hydrostatic pressure and thermal stimuli. Our study found that chondroinduction (SOX9, aggrecan, and sulfated glycosaminoglycan) and chondroprotection (HSP70) reached maximum expression levels when hydrostatic pressure and transient thermal increase acted in tandem, underscoring the critical role of these combined cues in preserving cartilage homeostasis. These findings led us to propose a refined model of the vicious cycle of cartilage degeneration.

4.
ACS Appl Mater Interfaces ; 15(43): 50095-50105, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37871154

RESUMO

Tissue wounds are a significant challenge for the healthcare system, affecting millions globally. Current methods like suturing and stapling have limitations as they inadequately cover the wound, fail to prevent fluid leakage, and increase the risk of infection. Effective solutions for diverse wound conditions are still lacking. Adhesive hydrogels, on the other hand, can be a potential alternative for wound care. They offer benefits such as firm sealing without leakage, easy and rapid application, and the provision of mechanical support and flexibility. However, the in vivo durability of hydrogels is often compromised by excessive swelling and unforeseen degradation, which limits their widespread use. In this study, we addressed the durability issues of the adhesive hydrogels by incorporating acrylamide polyethylene glycol N-hydroxysuccinimide (PEG-NHS) moieties (max. 2 wt %) into hydrogels based on hydroxy ethyl acrylamide (HEAam). The results showed that the addition of PEG-NHS significantly enhanced the adhesion performance, achieving up to 2-fold improvement on various soft tissues including skin, trachea, heart, lung, liver, and kidney. We further observed that the addition of PEG-NHS into the adhesive hydrogel network improved their intrinsic mechanical properties. The tensile modulus of these hydrogels increased up to 5-fold, while the swelling ratio decreased up to 2-fold in various media. These hydrogels also exhibited improved durability under the enzymatic and oxidative biodegradation induced conditions without causing any toxicity to the cells. To evaluate its potential for clinical applications, we used PEG-NHS based hydrogels to address tracheomalacia, a condition characterized by inadequate mechanical support of the airway due to weak/malacic cartilage rings. Ex vivo study confirmed that the addition of PEG-NHS to the hydrogel network prevented approximately 90% of airway collapse compared to the case without PEG-NHS. Overall, this study offers a promising approach to enhance the durability of adhesive hydrogels by the addition of PEG-NHS, thereby improving their overall performances for various biomedical applications.


Assuntos
Hidrogéis , Polietilenoglicóis , Polietilenoglicóis/farmacologia , Hidrogéis/farmacologia , Adesivos , Medicina Estatal , Materiais Biocompatíveis , Acrilamidas
5.
iScience ; 26(8): 107491, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37599834

RESUMO

Chondrocytes respond to various biophysical cues, including oxygen tension, transient thermal signals, and mechanical stimuli. However, understanding how these factors interact to establish a unique regulatory microenvironment for chondrocyte function remains unclear. Herein, we explore these interactions using a joint-simulating bioreactor that independently controls the culture's oxygen concentration, evolution of temperature, and mechanical loading. Our analysis revealed significant coupling between these signals, resulting in a remarkable ∼14-fold increase in collagen type II (COL2a) and aggrecan (ACAN) mRNA expression. Furthermore, dynamic thermomechanical stimulation enhanced glycosaminoglycan and COL2a protein synthesis, with the magnitude of the biosynthetic changes being oxygen dependent. Additionally, our mechanistic study highlighted the crucial role of SRY-box transcription factor 9 (SOX9) as a major regulator of chondrogenic response, specifically expressed in response to combined biophysical signals. These findings illuminate the integration of various mechanobiological cues by chondrocytes and provide valuable insights for improving the extracellular matrix content in cartilage-engineered constructs.

6.
iScience ; 26(7): 107168, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37456833

RESUMO

Tracheomalacia (TM) is a condition characterized by a weak tracheal cartilage and/or muscle, resulting in excessive collapse of the airway in the newborns. Current treatments including tracheal reconstruction, tracheoplasty, endo- and extra-luminal stents have limitations. To address these limitations, this work proposes a new strategy by wrapping an adhesive hydrogel patch around a malacic trachea. Through a numerical model, first it was demonstrated that a hydrogel patch with sufficient mechanical and adhesion strength can preserve the trachea's physiological shape. Accordingly, a new hydrogel providing robust adhesion on wet tracheal surfaces was synthesized employing the hydroxyethyl acrylamide (HEAam) and polyethylene glycol methacrylate (PEGDMA) as main polymer network and crosslinker, respectively. Ex vivo experiments revealed that the adhesive hydrogel patches can restrain the collapsing of malacic trachea under negative pressure. This study may open the possibility of using an adhesive hydrogel as a new approach in the difficult clinical situation of tracheomalacia.

7.
ACS Biomater Sci Eng ; 9(2): 651-661, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36625682

RESUMO

Articular cartilage presents a mechanically sensitive tissue. Chondrocytes, the sole cell type residing in the tissue, perceive and react to physical cues as signals that significantly modulate their behavior. Hyaline cartilage is a connective tissue with high dissipative capabilities, able to increase its temperature during daily activities, thus providing a dynamic thermal milieu for the residing chondrocytes. This condition, self-heating, which is still chiefly ignored among the scientific community, adds a new thermal dimension in cartilage mechanobiology. Motivated by the lack of studies exploring this dynamic temperature increase as a potential stimulus in cartilage-engineered constructs, we aimed to elucidate whether loading-induced evolved temperature serves as an independent or complementary regulatory cue for chondrocyte function. In particular, we evaluated the chondrocytes' response to thermal and/or mechanical stimulation in two types of scaffolds exhibiting dissipation levels close to healthy and degenerated articular cartilage. It was found, in both scaffold groups, that the combination of dynamic thermal and mechanical stimuli induced superior effects in the expression of major chondrogenic genes, such as SOX9 and LOXL2, compared to either signal alone. Similar effects were also observed in proteoglycan accumulation over time, along with increased mRNA transcription and synthesis of TRPV4, and for the first time demonstrated in chondrocytes, TREK1 ion channels. Conversely, the chondrogenic response of cells to isolated thermal or mechanical cues was generally scaffold-type dependent. Nonetheless, the significance of thermal stimulus as a chondro-inductive signal was better supported in both studied groups. Our data indicates that the temperature evolution is necessary for chondrocytes to more effectively perceive and translate applied mechanical loading.


Assuntos
Cartilagem Articular , Condrócitos , Condrócitos/metabolismo , Calefação , Cartilagem Articular/metabolismo
8.
Acta Biomater ; 158: 12-31, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36638938

RESUMO

The drive to develop cartilage implants for the treatment of major defects in the musculoskeletal system has resulted in a major research thrust towards developing biomaterial devices for cartilage repair. Investigational devices for the restoration of articular cartilage are considered as significant risk materials by regulatory bodies and therefore proof of efficacy and safety prior to clinical testing represents a critical phase of the multidisciplinary effort to bridge the gap between bench and bedside. To date, review articles have thoroughly covered different scientific facets of cartilage engineering paradigm, but surprisingly, little attention has been given to the preclinical considerations revolving around the validation of a biomaterial implant. Considering hydrogel-based cartilage products as an example, the present review endeavors to provide a summary of the critical prerequisites that such devices should meet for cartilage repair, for successful implantation and subsequent preclinical validation prior to clinical trials. Considerations pertaining to the choice of appropriate animal model, characterization techniques for the quantitative and qualitative outcome measures, as well as concerns with respect to GLP practices are also extensively discussed. This article is not meant to provide a systematic review, but rather to introduce a device validation-based roadmap to the academic investigator, in anticipation of future healthcare commercialization. STATEMENT OF SIGNIFICANCE: There are significant challenges around translation of in vitro cartilage repair strategies to approved therapies. New biomaterial-based devices must undergo exhaustive investigations to ensure their safety and efficacy prior to clinical trials. These considerations are required to be applied from early developmental stages. Although there are numerous research works on cartilage devices and their in vivo evaluations, little attention has been given into the preclinical pathway and the corresponding approval processes. With a focus on hydrogel devices to concretely illustrate the preclinical path, this review paper intends to highlight the various considerations regarding the preclinical validation of hydrogel devices for cartilage repair, from regulatory considerations, to implantation strategies, device performance aspects and characterizations.


Assuntos
Cartilagem Articular , Hidrogéis , Animais , Hidrogéis/farmacologia , Cartilagem Articular/patologia , Materiais Biocompatíveis/farmacologia , Engenharia Tecidual/métodos
9.
Biomacromolecules ; 23(12): 5007-5017, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36379034

RESUMO

The surgical treatments of injured soft tissues lead to further injury due to the use of sutures or the surgical routes, which need to be large enough to insert biomaterials for repair. In contrast, the use of low viscosity photopolymerizable hydrogels that can be inserted with thin needles represents a less traumatic treatment and would therefore reduce the severity of iatrogenic injury. However, the delivery of light to solidify the inserted hydrogel precursor requires a direct access to it, which is mostly invasive. To circumvent this limitation, we investigate the approach of curing the hydrogel located behind biological tissues by sending near-infrared (NIR) light through the latter, as this spectral region has the largest transmittance in biological tissues. Upconverting nanoparticles (UCNPs) are incorporated in the hydrogel precursor to convert NIR transmitted through the tissues into blue light to trigger the photopolymerization. We investigated the photopolymerization process of an adhesive hydrogel placed behind a soft tissue. Bulk polymerization was achieved with local radiation of the adhesive hydrogel through a focused light system. Thus, unlike the common methods for uniform illumination, adhesion formation was achieved with local micrometer-sized radiation of the bulky hydrogel through a gradient photopolymerization phenomenon. Nanoindentation and upright microscope analysis confirmed that the proposed approach for indirect curing of hydrogels below the tissue is a gradient photopolymerization phenomenon. Moreover, we found that the hydrogel mechanical and adhesive properties can be modulated by playing with different parameters of the system such as the NIR light power and the UCNP concentration. The proposed photopolymerization of adhesive hydrogels below the tissue opens the prospect of a minimally invasive surgical treatment of injured soft tissues.


Assuntos
Hidrogéis , Nanopartículas , Adesivos , Materiais Biocompatíveis , Polimerização
10.
Elife ; 112022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35256051

RESUMO

During loading of viscoelastic tissues, part of the mechanical energy is transformed into heat that can locally increase the tissue temperature, a phenomenon known as self-heating. In the framework of mechanobiology, it has been accepted that cells react and adapt to mechanical stimuli. However, the cellular effect of temperature increase as a by-product of loading has been widely neglected. In this work, we focused on cartilage self-heating to present a 'thermo-mechanobiological' paradigm, and demonstrate how the coupling of a biomimetic temperature evolution and mechanical loading could influence cell behavior. We thereby developed a customized in vitro system allowing to recapitulate pertinent in vivo physical cues and determined the cells chondrogenic response to thermal and/or mechanical stimuli. Cellular mechanisms of action and potential signaling pathways of thermo-mechanotransduction process were also investigated. We found that co-existence of thermo-mechanical cues had a superior effect on chondrogenic gene expression compared to either signal alone. Specifically, the expression of Sox9 was significantly upregulated by application of the physiological thermo-mechanical stimulus. Multimodal transient receptor potential vanilloid 4 (TRPV4) channels were identified as key mediators of thermo-mechanotransduction process, which becomes ineffective without external calcium sources. We also observed that the isolated temperature evolution, as a by-product of loading, is a contributing factor to the cell response and this could be considered as important as the conventional mechanical loading. Providing an optimal thermo-mechanical environment by synergy of heat and loading portrays new opportunity for development of novel treatments for cartilage regeneration and can furthermore signal key elements for emerging cell-based therapies.


Assuntos
Condrócitos , Condrogênese , Sinalização do Cálcio , Condrócitos/metabolismo , Sinais (Psicologia) , Mecanotransdução Celular/fisiologia , Temperatura
11.
Soft Matter ; 17(29): 7038-7046, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34251015

RESUMO

Granular hydrogels with high stability, strength, and toughness are laborious to develop. Post-curing is often employed to bind microgels chemically and enhance mechanical properties. Here a unique strategy was investigated to maintain microgels together with a novel self-reinforced silk granular hydrogel composed of 10 wt% 20 kDa poly(ethylene glycol) dimethacrylate microgels and regenerated silk fibroin fibers. The principle is to use the swelling of microgels to concentrate the surrounding solution and regenerate silk fibroin in situ. Self-reinforcement is subsequently one of the added functions. We showed that silk fibroin in most compositions was homogeneously distributed and had successfully regenerated in situ around microgels, holding them together in a network-like structure. FTIR analysis revealed the presence of amorphous and crystalline silk fibroin, where 50% of the secondary structures could be assigned to strong ß-sheets. Swelling ratios, i.e. 10-45 vol%, increased proportionally with the microgel content, suggesting that mainly microgels governed swelling. In contrast, the elastic modulus, i.e. 58-296 kPa, increased almost linearly with silk fibroin content. Moreover, we showed that the precursor could be injected and cast into a given shape. Viscous precursors of various compositions were also placed side by side to create mechanical gradients. Finally, it was demonstrated that silk granular hydrogel could successfully be synthesized with other microgels like gelatin methacryloyl. Silk granular hydrogels represent, therefore, a novel class of self-reinforced hydrogel structures with tunable swelling and elastic properties.


Assuntos
Fibroínas , Hidrogéis , Conformação Proteica em Folha beta , Regeneração , Seda
12.
Curr Res Transl Med ; 69(3): 103299, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34192658

RESUMO

In mature individuals, hyaline cartilage demonstrates a poor intrinsic capacity for repair, thus even minor defects could result in progressive degeneration, impeding quality of life. Although numerous attempts have been made over the past years for the advancement of effective treatments, significant challenges still remain regarding the translation of in vitro cartilage engineering strategies from bench to bedside. This paper reviews the latest concepts on engineering cartilage tissue in view of biomaterial scaffolds, tissue biofabrication, mechanobiology, as well as preclinical studies in different animal models. The current work is not meant to provide a methodical review, rather a perspective of where the field is currently focusing and what are the requirements for bridging the gap between laboratory-based research and clinical applications, in light of the current state-of-the-art literature. While remarkable progress has been accomplished over the last 20 years, the current sophisticated strategies have reached their limit to further enhance healthcare outcomes. Considering a clinical aspect together with expertise in mechanobiology, biomaterial science and biofabrication methods, will aid to deal with the current challenges and will present a milestone for the furtherance of functional cartilage engineering.


Assuntos
Cartilagem Articular , Engenharia Tecidual , Animais , Humanos , Qualidade de Vida
13.
Macromol Rapid Commun ; 42(10): e2000660, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33834552

RESUMO

Attaching hydrogels to soft internal tissues is crucial for the development of various biomedical devices. Tough sticky hydrogel patches present high adhesion, yet with lack of injectability and the need for treatment of contacting surface. On the contrary, injectable and photo-curable hydrogels are highly attractive owing to their ease of use, flexibility of filling any shape, and their minimally invasive character, compared to their conventional preformed counterparts. Despite recent advances in material developments, a hydrogel that exhibits both proper injectability and sufficient intrinsic adhesion is yet to be demonstrated. Herein, a paradigm shift is proposed toward the design of intrinsically adhesive networks for injectable and photo-curable hydrogels. The bioinspired design strategy not only provides strong adhesive contact, but also results in a wide window of physicochemical properties. The adhesive networks are based on a family of polymeric backbones where chains are modified to be intrinsically adhesive to host tissue and simultaneously form a hydrogel network via a hybrid cross-linking mechanism. With this strategy, adhesion is achieved through a controlled synergy between the interfacial chemistry and bulk mechanical properties. The functionalities of the bioadhesives are demonstrated for various applications, such as tissue adhesives, surgical sealants, or injectable scaffolds.


Assuntos
Hidrogéis , Adesivos Teciduais , Adesivos , Polímeros , Medicina Regenerativa
14.
Artigo em Inglês | MEDLINE | ID: mdl-32318555

RESUMO

Intracranial aneurysms are increasingly being treated with endovascular therapy, namely coil embolization. Despite being minimally invasive, partial occlusion and recurrence are more frequent compared to open surgical clipping. Therefore, an alternative treatment is needed, ideally combining minimal invasiveness and long-term efficiency. Herein, we propose such an alternative treatment based on an injectable, radiopaque and photopolymerizable polyethylene glycol dimethacrylate hydrogel. The rheological measurements demonstrated a viscosity of 4.86 ± 1.70 mPa.s, which was significantly lower than contrast agent currently used in endovascular treatment (p = 0.42), allowing the hydrogel to be injected through 430 µm inner diameter microcatheters. Photorheology revealed fast hydrogel solidification in 8 min due to the use of a new visible photoinitiator. The addition of an iodinated contrast agent in the precursor contributed to the visibility of the precursor injection under fluoroscopy. Using a customized light-conducting microcatheter and illumination module, the hydrogel was implanted in an in vitro silicone aneurysm model. Specifically, in situ fast and controllable injection and photopolymerization of the developed hydrogel is shown to be feasible in this work. Finally, the precursor and the polymerized hydrogel exhibit no toxicity for the endothelial cells. Photopolymerizable hydrogels are expected to be promising candidates for future intracranial aneurysm treatments.

15.
Soft Matter ; 16(15): 3769-3778, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32239014

RESUMO

Developing hydrogels with optimal properties for specific applications is challenging as most of these properties, such as toughness, stiffness, swelling or deformability, are interrelated. The improvement of one property usually comes at the cost of another. In order to decouple the interdependence between these properties and to extend the range of material properties for hydrogels, we propose a strategy that combines composite and microgel approaches. The study focuses first on tailoring the swelling performance of hydrogels while minimally affecting other properties. The underlying principle is to partially substitute some of the hydrogels with pre-swollen microgels composed of the same materials. Swelling reductions up to 45% were obtained. Those granular hydrogels were then reinforced with nano-fibrillated cellulose fibres obtaining hybrid granular materials to improve their toughness and to further reduce their initial swelling. Four different structures of neat, granular and composite hydrogels including 63 different hydrogel compositions based on 20 kDa poly(ethylene glycol)dimethacrylate showed that the swelling ratio could be tailored without significantly affecting elastic modulus and deformation performance. The results explain the role of the PEGDM precursors on the swelling of the microgels as well as the influence of the microgel and fibre contents on the final properties. Moreover, the precursors of hydrogels with similar mechanical or swelling performance were injectable with a wide range of complex viscosities from 0.1 Pa s to over 1000 Pa s offering new opportunities for applications in confined as well as in unconfined environments.

16.
Biomacromolecules ; 21(1): 240-249, 2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-31596075

RESUMO

Rapid adhesion between tissue and synthetic materials is relevant to accelerate wound healing and to facilitate the integration of implantable medical devices. Most frequently, tissue adhesives are applied as a gel or a liquid formulation. This manuscript presents an alternative approach to mediate adhesion between synthetic surfaces and tissue. The strategy presented here is based on the modification of the surface of interest with a thin polymer film that can be transformed on-demand, using UV-light as a trigger, from a nonadhesive into a reactive and tissue adhesive state. As a first proof-of-concept, the feasibility of two photoreactive, thin polymer film platforms has been explored. Both of these films, colloquially referred to as polymer brushes, have been prepared using surface-initiated atom transfer radical polymerization (SI-ATRP) of 2-hydroxyethyl methacrylate (HEMA). In the first part of this study, it is shown that direct UV-light irradiation of PHEMA brushes generates tissue-reactive aldehyde groups and facilitates adhesion to meniscus tissue. While this strategy is very straightforward from an experimental point of view, a main drawback is that the generation of the tissue reactive aldehyde groups uses the 250 nm wavelength region of the UV spectrum, which simultaneously leads to extensive photodegradation of the polymer brush. The second part of this report outlines the synthesis of PHEMA brushes that are modified with 4-[3-(trifluoromethyl)-3H-diazirin-3-yl]benzoic acid (TFMDA) moieties. UV-irradiation of the TFMDA containing brushes transforms the diazirine moieties into reactive carbenes that can insert into C-H, N-H, and O-H bonds and mediate the formation of covalent bonds between the brush surface and meniscus tissue. The advantage of the TFMDA-modified polymer brushes is that these can be activated with 365 nm wavelength UV light, which does not cause photodegradation of the polymer films. While the work presented in this manuscript has used silicon wafers and fused silica substrates as a first proof-of-concept, the versatility of SI-ATRP should enable the application of this strategy to a broad range of biomedically relevant surfaces.


Assuntos
Metacrilatos/química , Adesivos Teciduais/química , Adesivos Teciduais/efeitos da radiação , Animais , Azirinas , Benzoatos , Bovinos , Menisco/efeitos dos fármacos , Menisco/efeitos da radiação , Metano/análogos & derivados , Metano/química , Processos Fotoquímicos , Polimerização , Dióxido de Silício/química , Propriedades de Superfície , Raios Ultravioleta
17.
Front Bioeng Biotechnol ; 8: 619858, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33553124

RESUMO

An alternative intracranial aneurysm embolic agent is emerging in the form of hydrogels due to their ability to be injected in liquid phase and solidify in situ. Hydrogels have the ability to fill an aneurysm sac more completely compared to solid implants such as those used in coil embolization. Recently, the feasibility to implement photopolymerizable poly(ethylene glycol) dimethacrylate (PEGDMA) hydrogels in vitro has been demonstrated for aneurysm application. Nonetheless, the physical and mechanical properties of such hydrogels require further characterization to evaluate their long-term integrity and stability to avoid implant compaction and aneurysm recurrence over time. To that end, molecular weight and polymer content of the hydrogels were tuned to match the elastic modulus and compliance of aneurysmal tissue while minimizing the swelling volume and pressure. The hydrogel precursor was injected and photopolymerized in an in vitro aneurysm model, designed by casting polydimethylsiloxane (PDMS) around 3D printed water-soluble sacrificial molds. The hydrogels were then exposed to a fatigue test under physiological pulsatile flow, inducing a combination of circumferential and shear stresses. The hydrogels withstood 5.5 million cycles and no significant weight loss of the implant was observed nor did the polymerized hydrogel protrude or migrate into the parent artery. Slight surface erosion defects of 2-10 µm in depth were observed after loading compared to 2 µm maximum for non-loaded hydrogels. These results show that our fine-tuned photopolymerized hydrogel is expected to withstand the physiological conditions of an in vivo implant study.

18.
ACS Appl Mater Interfaces ; 11(43): 39662-39671, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31565916

RESUMO

Development of mechanically durable and biologically inductive hydrogels is a major challenge for load-bearing applications such as engineered cartilage. Dissipative capacity of articular cartilage is central to its functional behavior when submitted to loading. While fluid frictional drag is playing a significant role in this phenomenon, the flow-dependent source of dissipation is mostly overlooked in the design of hydrogel scaffolds. Herein, we propose an original strategy based on the combination of fluidic and polymeric dissipation sources to simultaneously enhance hydrogel mechanical and mechanobiological performances. The nondestructive dissipation processes were carefully designed by hybrid cross-linking of the hydrogel network and low permeability of the porous structure. It was found that intrachain and pore water distribution in the porous hydrogels improves the mechanical properties in high water fractions. In contrast to widely reported tough hydrogels presenting limited load support capability at low strain values, we obtained stiff and dissipative hydrogels with unique fatigue behavior. We showed that the fatigue resistance capability is not a function of morphology, dissipation level, and stiffness of the viscoelastic hydrogels but rather depends on the origin of the dissipation. Moreover, the preserved dissipation source under mechanical stimulation maintained a mechanoinductive niche for enhancing chondrogenesis owing to fluid frictional drag contribution. The proposed strategy can be widely used to design functional scaffolds in high loading demands for enduring physiological stimuli and generating regulatory cues to cells.


Assuntos
Condrócitos/metabolismo , Condrogênese , Hidrogéis/química , Teste de Materiais , Tecidos Suporte/química , Linhagem Celular , Condrócitos/citologia , Humanos , Porosidade
19.
Med Eng Phys ; 68: 17-24, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30979584

RESUMO

Patella-related complications after total knee arthroplasty (TKA) remain a major clinical concern. Previous studies have suggested that increased postoperative patellar bone strain could be related to such complications, but there is limited knowledge on patellar strain after TKA. The objective of this study was to predict patellar bone strain after TKA and evaluate correlations with various preoperative data. Fourteen TKA patients with a minimum follow-up of one year were included in this study. Using preoperative CT datasets, preoperative planning, and postoperative X-rays, a method is presented to generate patient-specific finite element models after virtual TKA. Patellar kinematics and forces were predicted during a squat movement, and patellar bone strain was evaluated at 60° of knee flexion. Strain varied greatly among patients, but was strongly negatively correlated (r = -0.85, p < 0.001) with bone mineral density (BMD) and moderately positively (r  = 0.54, p  =  0.05) with body mass index (BMI). The BMI/BMD ratio explained 87% of strain, and should be further investigated as a potential risk factor for clinical complications. This study represents a preliminary step towards the identification of patients at risk of patellar complications after TKA.


Assuntos
Artroplastia do Joelho/efeitos adversos , Índice de Massa Corporal , Densidade Óssea , Patela/fisiologia , Estresse Mecânico , Idoso , Idoso de 80 Anos ou mais , Fenômenos Biomecânicos , Feminino , Análise de Elementos Finitos , Humanos , Joelho/fisiologia , Joelho/cirurgia , Masculino , Pessoa de Meia-Idade , Movimento , Patela/diagnóstico por imagem , Patela/cirurgia , Modelagem Computacional Específica para o Paciente , Fatores de Risco , Tomografia Computadorizada por Raios X
20.
Clin Biomech (Bristol, Avon) ; 59: 174-180, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30268995

RESUMO

BACKGROUND: Fracture fixation in weak bone is still a clinical challenge. Screw augmentation was shown to successfully increase their primary stability. The currently used calcium phosphate or polymeric bone cements, however, present important drawbacks such as induced toxicity and/or impaired bone neo-formation. A new approach to enhance bone screw primary stability without affecting bone formation is the use of non-setting, calcium phosphate loaded soft materials as the augmentation material. METHODS: Two types of biomaterials (non-crosslinked hyaluronic acid as viscous fluid and agar as hydrogel) were loaded with 40 wt/vol% of hydroxyapatite particles and characterized. The screw augmentation effect of all materials was evaluated through pull-out tests in bovine cancellous bone and compared to the non-augmented situation (control). The bone mineral density of each test sample was measured with µCT scans and was used to normalize the pull-out strength. FINDINGS: Both materials loaded with hydroxyapatite increased the normalized pull-out strength of the screws compared to control samples and particle-free materials. This counter-intuitive augmentation effect increased with decreasing bone mineral density and was independent from the type of the soft materials used. INTERPRETATION: We were able to demonstrate that non-setting, injectable biomaterials loaded with ceramic particles can significantly enhance the primary stability of bone screws. This material combination opens the unique possibility to achieve a screw augmentation effect without impairing or even potentially favoring the bone formation in proximity to the screw. This effect would be particularly advantageous for the treatment of osteoporotic bone fractures requiring a stabilization with bone screws.


Assuntos
Materiais Biocompatíveis , Parafusos Ósseos , Osso Esponjoso/cirurgia , Durapatita , Fixação Interna de Fraturas/instrumentação , Fraturas por Osteoporose/cirurgia , Animais , Fenômenos Biomecânicos , Cimentos Ósseos/uso terapêutico , Densidade Óssea , Fosfatos de Cálcio , Bovinos , Fixação Interna de Fraturas/métodos , Humanos , Resistência à Tração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...